S

A String Extension for Pascal

F. D. Boswell
M. J. Carmody
T. R. Grove

Computer Systems Group
University of Waterloo
Waterloo, Ontario, Canada N2L 3G

Abstract

The Pascal language, as described by the ISO Draft Proposal or Jensen and Wirth,
is deficient in its facilities for character-string manipulation. A proposal for an
extension to Pascal which facilitates the manipulation of character strings is given.
The extension consists of a modification to the "type compatibility” rules of the
language, plus a set of pre-defined functions and procedures. The extension has
been implemented in the Waterloo Pascal compiler and the Waterloo microPascal
interpreter.

Introduction

The Pascal language, as defined by the ISO Third Draft Proposal[ISO81] or Jensen and Wirth[Jen74],
makes the manipulation of character strings inconvenient. An extension to Pascal which provides
convenient variable-length string manipulation has been designed and implemented. Three factors
influenced the design of the extension:

® Wirth's objective of a “reliable and efficient” implementation;

° observation of other Pascal string extensions (notably the Berkeley Pascal for Unix{[Ker81]);
and

® observation of the string manipulation facilities in other languages (such as C[Ker78] and
WSL[Bos82]). :

These influences lead to an extension which causes a minimal perturbation of the “standard” language, and
which, at the same time, is reasonably concise and efficient. Additionally, the extension has been designed
in such a way as to allow standard-conforming Pascal programs to behave as always, without interference.

The string extension described here (the "Waterloo Pascal string extension”) has been implemented in
the Waterloo Pascal compiler (IBM 370) and the Waterloo microPascal interpreter (IBM VM /370 CMS;
IBM Personal Computer; microWAT; Commodore SuperPET).

The Problem With Standard Pascal Strings

Standard Pascal defines a string type to be a packed array [ 1 .. n ] of char (where n is the length of the
string). This definition leads to four fundamental problems from a practical viewpoint:

TUnix is a trademark of Bell Laboratories.

SIGPLAN Notices, V18 #2, February 1983



-58-

(1) String types are compatible only if they are of exactly the same length, making it inconvenient
to render common string-processing algorithms in Pascal. For example, in standard Pascal, 'abc’
could not be assigned or compared to a string variable of any length except 3.

(2)  Single character constants such as ‘a’ are of type char and are therefore not compatible with
any string types, even packed array [ 1 .. | ] of char.

(3)  In standard Pascal, there is no way to represent the null string with a constant. The zero length
string constant ” is not allowed.

(4) The reading of strings (from rext files), while not impossible, is inconvenient due to the view of
Pascal that strings are collections of single characters.
The Waterloo Pascal Extension
The extension for string processing in Waterloo Pascal provide the following facilities:
(1)  type compatibility for unequal length strings;
(2) a simple and efficient mechanism for variable length strings;

(3) a method for representing string constants which are only one character long, as well as the null
string;

(4)  a method of reading string input; and
(5)  alibrary of routines for manipulating strings.

The following sections provide informal descriptions of the various aspects of the string extension.

String Type Compatibility

The extension defines all string types to be uniformly compatible, without regard to their length. For
example, suppose the following declarations were made:

var
strl : packed array [ 1 .. 10 ] of char,
str2 : packed array [ 1 .. 5 ] of char;

When a string is assigned to a variable which is not of sufficient length, the string is truncated to the
appropriate length (the length of the destination variable). This extension also applies to value parameter
passing which has the same type compatibility rules as assignment. Hence, the Waterloo Pascal string
extension allows the following assignment statements, which would not be allowed in standard Pascal.

strl := str2;
str2 := strl;
strl := "abcdefg’;
str2 := "abedefg’;

The extension also allows the relational operators to be applied to strings of unequal length; for example:

strl = sir2
str2 <='ab’
strl > 'abcdef’



~50-

String Constants

The usual Pascal representation for string constants, using single quotes, is of course supported. Note that
a string constant of length 1 is given type char. The extension provides that strings may be enclosed in
double quotes. When double quotes are used, a string constant of length 1 will be given a string type, as
opposed to type char. The null string may be represented by two adjacent double quotes (™). The
following examples illustrate these lexical extensions:

strl ="

stri :="a"

strl = "ab";
strl <>"
strl = "a"

strl <="abed"

A convenient convention, which is used in the remainder of this description, is to use double quotes for
all string constants and reserve single quotes only for single character constants.

Variable Length Strings

Strings may be thought of as variable length up to some fixed maximum which is specified in their
declaration. A string variable of length 10, such as strl declared above, may contain any string from 0 to
10 characters in length. A special character value, StrEnd, is used to mark the end of a string which
occupies less than the maximum length of a string variable. When the assignment statement

strl := "abc”

is executed, the individual components of variable str! have the following values:

stri[ 1 ] ="

stri[ 2] =7

stri[ 3]='¢

strl[ 4 ] = StrEnd
strl[ 5 ] is undefined

strl[ 10 ] is undefined

If strl were assigned a string of length 10 (or more), no StrEnd character would be stored in str/. For
most applications, the Pascal programmer need not even be aware of the underlying representation that is
used for the variable-length strings.

Procedures and Functions For Use With Strings
Generally, those procedures and functions which take string arguments, such as write, reset and rewrite,

take the extended string parameters. In the descriptions that follow, the identifiers string, strl, str2 and
dest represent strings, and the identifiers length and offset represent integers.

Procedures
StrConcat( strl, str2 )

Procedure StrConcat concatentates str2 to strl. Strl must be a string variable. For example, if



-60-

strl := "ab”;
StrConcat( strl, "cd” );

were executed, str/ would contain "abed”,

StrDelete( string, length, offset )

Procedure StrDelete removes length characters from string starting at index offset. String must be a
string variable. For example:

strl ;= "abexxxdef”;
StrDelete( strl, 3, 4 );

leaves strl containing “abcdef”.

Strinsert( stri, str2, offset )

Procedure Strinsert inserts str2 into strl at index offset. Sirl must be a string variable. For
example:

strl ;= "abcdef™;
Strinsert( strl, "xxx", 4 );

leaves strl containing "abexxxdef”.

SubStr( string, length, offset, dest )

Procedure SubStr assigns the segment of string starting at offset, of the specified length, to the
string variable dest. For example:

strl := "abcdef™;
SubStr( stri, 3, 3, str2 ),

leaves "cde” in str2.

Functions

StrLen( string ) : integer

Function StrLen returns the length of a string. For a string constant this is the length of the string,
and for a string variable it is the length of the string which currently is contained in the variable. For

example:
StrLen ( "abc” ) = 3

If the following assignment were executed:
strl := "abc”,

then StrLen( strl ) would be 3.



-61-

StrScan( strl, str2 ) : integer

Function StrScan searches strl for an occurrence of str2. If found, the index of the first matching
character in strl is returned, otherwise 0 is returned to indicate no occurrence. For example:

StrScan( "123abed”, "abc” ) = 4
StrScan( "be”, "abc” ) = 0

StrSize( string ) : integer

Function StrSize returns the upper bound of the index type of string. For a string constant this is the
length of the string, and for a string variable it is the maximum length string which the variable can

store.

StrSize ( "abc” ) = 3
StrSize ( strl ) = 10

String /O

The standard procedures write and writeln have been extended to accept variable-length string parameters.
Only the used portion of a string variable (that is, up to a StrEnd character, if any) is written.

Similarly, the standard procedures read and readin have been extended to allow variable-length string
data to be read. Characters are read into a string variable until it is full (that is, StrSize characters have
been read), or end-of-line is encountered.

References

[Bos82] Boswell, F.D.
Waterloo Systems Language
WATFAC Publications, Waterloo, Ontario, Canada, 1982

[ISO81] The International Organization for Standardization (ISO)
Third Draft Proposal ISO/DP 7185, Specification for the Computer Programming Language
Pascal
1981

[Jen74] Jensen, K. and Wirth, N.
Pascal User Manual and Report (Second Edition)
Springer-Verlag, New York, 1974

[Ker78] Kernighan, B.W. and Ritchie, D.M.
The C Programming Language
Prentice-Hall, Englewood Cliffs, New Jersey, 1978

[Ker81]  Kernighan, B.W. and Plauger, P.J.
Software Tools in Pascal
Addison-Wesley, Reading, Mass., 1981



